[1] ELRAD T,FILMAN R E,BADER A. Aspect-oriented programming[J].Communication of the ACM, 2001, 44(10):29-32. [2] ELRAD T, AKSIT M M, KICZALES G, et al. Discussing aspects of AOP[J].Communication of the ACM, 2001, 44(10):33-38.
[3] HANNEMANN J,KICZALES G. Overcoming the prevalent decomposition of legacy code[EB/OL].http://www.cs.ubc.ca/~jan/papers/hannemann-icse2001.pdf,2004-10.
[4] GRISWOLD W G, KATO Y, YUAN J J. Aspect browser: tool support for managing dispersed aspects[R].San Diego,CA,USA: Department of Computer Science and Engineering, University of California, 1999.
[5] BREU S,KRINKE J. Aspect mining using event traces[A].Proceedings of 19th IEEE International Conference on Automated Software Engineering[C].Linz,Austria: IEEE Computer Society, 2004.310-315.
[6] CAO Donggang, MEI Hong. Aspect orientation - a new approach to programming[J].Computer Science, 2003,30(9):5-10(in Chinese).[曹东刚, 梅 宏. 面向Aspect的程序设计-一种新的编程范型[J].计算机科学,2003, 30 (9): 5-10.]
[7] HAN J W, KANBR M. Data mining concepts and techniques[M].Beijing: Higher Education Press, 2001.143-177.
[8] KAUFAN L, ROUSSEEUW P J. Finding groups in data: an introduction to cluster analysis[M].New York,NY,USA: John Wiley&Sons,1990.
[9] ZHANG T,RAMAKRISHNAN R, LIVNY M. Birch: an efficient data clustering method for very large databases[A].Proceedings of ACM SIGMOD[C].Montreal,Quebec,Canada: ACM Press,1996. 103-114.
[10] ESTER M, KRIEGEL HP, SANDER J, et al. A density based algorithm for discovering clusters in large spatial databases with noise[A].Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining[C].Portland: AAAI Press,1996. 226-231.
[11] GUHA S, RASTOGI R, SHIM K. CURE: an efficient clustering algorithm for large databases[A].Proceeding of the ACM SIGMOD International Conference on Management of Data[C].Seattle,WA,USA: ACM Press, 1998. 73-84.
[12] KRIEGEL H P, KROGER P, GOTLIBOVICH I.Incremental OPTICS: efficient computation of updates in a hierarchical cluster ordering[A].Proceedings of 5th International Conference on Data Warehousing and Knowledge Discouery[C].Progue,Czechic:Springer-Verlag Press,2003.224-233.
[13] CHU S C, RODDICK, J F,PAN J S. An incremental multi-centroid, multi-run sampling scheme for k-medoids-based algorithms[A].Proceedings of the 3rd International Conference on Data Mining Methods and Databases[C].Bologna,Italy:WIT Press, 2002,553-562.
[14] KARYPIS G, HAN E H,KUMAR V. Chameleon: a hierarchical clustering algorithm using dynamic modeling[J].IEEE Transactions on Computer, 1999, 32(8):68-75.
|