• 论文 •    

自适应阈值故障检测方法在DAMADICS基准平台中的应用

薄翠梅, 李俊, 张广明,杨海荣   

  1. 1.南京工业大学 自动化与电气工程学院,江苏南京210009;2.南京工业大学 化学与化工学院, 江苏南京210009
  • 出版日期:2010-06-15 发布日期:2010-06-25

Application of fault detection based on adaptive threshold in the DAMDDICS benchmark problem

BO Cui-mei, LI Jun,ZHANG Guang-ming,YANG Hai-rong   

  1. 1.School of Automation & Electrical Engineering, Nanjing University of Technology, Nanjing 210009,China;2.School of Chemistry & Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China)
  • Online:2010-06-15 Published:2010-06-25

摘要: 非线性动态系统在实际运行过程中存在建模误差、测量噪音和外部扰动等不确定性,为此提出了一种基于自适应阈值的鲁棒故障诊断方法。该方法采用多层感知机网络建立正常工况的解析模型,采用外部椭圆约束迭代算法估计故障检测的自适应阈值范围,并采用了加权移动平均残差和自适应阈值包络轨迹设计了闭环回路的在线故障检测策略。以DAMADICS基准实验平台的19种故障为例进行了仿真实验,结果表明了该方法的有效性。

关键词: 故障检测, 残差鲁棒性, 自适应阈值, DAMADICS基准平台

Abstract: A robust fault detection approach based on self-adaptive threshold was presented to detect the fault of nonlinear systems with uncertain modeling errors, noise and disturbance. With this method, model was constructed by using multi-layer perception neural network, and the adaptive threshold interval was estimated by using outer bounding ellipsoid algorithm. Then, the online fault detection strategy was designed by using weighted moving average remnant and adaptive threshold interval. Finally, the proposed approach was applied in detection of the faults proposed in an industrial actuator used as an Fault Detection and Isolation(FDI)benchmark in the DAMADICS. Simulation results demonstrated the effectiveness of this approach.

Key words: fault detection, remnant robustness, adaptive threshold, DAMADICS benchmark problem

中图分类号: