• 论文 •    

基于图论和模糊TOPSIS的高速切削工艺参数优化决策

张明树,阎春平,覃斌   

  1. 重庆大学机械传动国家重点实验室
  • 收稿日期:2013-11-25 修回日期:2013-11-25 出版日期:2013-11-25 发布日期:2013-11-25

High-speed cutting parameters optimization decision based on graph theory and fuzzy TOPSIS

ZHANG Ming-shu,YAN Chun-ping+,QIN Bin   

  1. State Key Laboratory of Mechanical Transmission,Chongqing University
  • Received:2013-11-25 Revised:2013-11-25 Online:2013-11-25 Published:2013-11-25

摘要: 为了自适应地构建合理规模的工艺实例过滤集,避免最优匹配实例加工效果不理想的问题,提出一种基于图论和模糊逼近理想排序法的高速切削工艺参数优化决策方法。该方法首先利用图论工具对工艺实例相似特征关联进行分析,通过对无向图最小生成树的分割完成工艺实例过滤集的自适应构建;然后重点考虑工艺实例的加工效果,采用模糊逼近理想排序法,以加工效果相对最优为目标对工艺实例过滤集中的备选实例进行多属性决策,最终获取待决策工艺问题的最优工艺参数。实验结果表明了该方法的可行性和有效性。

关键词: 工艺参数, 优化决策, 最小生成树, 模糊逼近理想排序法

Abstract: To construct process case filtering collection with rational scale adaptively,and avoid the unsatisfactory processing effect of optimal matching case,a high-speed cutting parameters optimization decision method based on graph theory and fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was proposed.By analyzing the association of casessimilar feature with graph theory and segmenting Minimum Spanning Tree (MST) of weighted undirected graph,the process case filtering collection was constructed adaptively.To consider processing effect of process case,fuzzy TOPSIS was applied to evaluate the processing effect of candidate cases in the process case filtering collection,and the optimal cutting parameters for target process problem was obtained.The feasibility and effectiveness of the proposed method was validated by experiment.

Key words: cutting parameters, optimization decision, minimum spanning tree, fuzzy technique for order preference by similarity to ideal solution

中图分类号: