• 论文 •    

基于进化神经网络的磨削粗糙度预测模型

陈廉清1,郭建亮1,杨勋2,迟军1,赵霞3   

  1. 1.宁波工程学院机械工程学院,2.上海交通大学机械与动力工程学院,3.宁波职业技术学院
  • 收稿日期:2013-11-25 修回日期:2013-11-25 出版日期:2013-11-25 发布日期:2013-11-25

Grinding roughness prediction model based on evolutionary artificial neural network

CHEN Lian-qing1,GUO Jian-liang1,YANG Xun2,CHI Jun1,ZHAO Xia3   

  1. 1.School of Mechanical Engineering,Ningbo University of Technology,2.School of Mechanical Engineering,Shanghai Jiaotong University,3.School of Haitian,Ningbo Polytechnic
  • Received:2013-11-25 Revised:2013-11-25 Online:2013-11-25 Published:2013-11-25

摘要: 针对外圆磨削中表面粗糙度的影响因素多、监测困难的问题,构建了表面粗糙度预测模型的开放式实验系统,在分析反向传播神经网络收敛速度慢、易陷入局部最小值等缺点的基础上,提出遗传算法与反向传播神经网络结合的表面粗糙度预测模型,利用遗传算法的全局搜索能力对反向传播神经网络的初始权值和阈值进行优化,详细说明了遗传算法和反向传播网络各参数的确定方法,并对比了相同网络结构下的反向传播预测模型和遗传算法-反向传播模型的预测性能。根据隐层节点计算经验公式,建立了四种基于遗传算法-反向传播网络结构的外圆纵向磨削表面粗糙度预测模型,通过对四种模型样本的预测精度检验,最终确定一种最优的预测模型结构。试验证明,遗传算法和反向传播网络的结合可以提高表面粗糙度预测模型的收敛速度和预测精度,满足智能磨削对表面粗糙度预测高效性、准确性的需求。

关键词: 进化神经网络, 外圆磨削, 粗糙度预测

Abstract: Due to the multiple influence factors and difficulty in measure of external cylindrical grinding roughness,an open experimental system with a roughness model was developed.Based on analyzing the Back Propagation(BP) networks disadvantages of low convergence speed and frequently falling into local minimum value,a roughness prediction model of BP neural network integrated with genetic algorithm was proposed.The total search capability of Genetic Algorithm (GA) was used to optimize initial weight values and threshold values of the BP neural network.The methods for determining every parameter relevant to genetic algorithm and BP neural network were demonstrated in detail.The prediction performances of BP model and GA-BP model were compared under the same network structure.Four different GA-BP network structures were considered according to empirical formula for calculating hidden layer node amount.The best structure was finally determined from prediction accuracy inspection of four models.Experimental results showed that the integration of genetic algorithm and BP network could improve the convergence speed and prediction accuracy of roughness model,and could meet the steep demand of intelligent grinding on prediction efficiency and accuracy.

Key words: evolutionary neural network, external cylindrical grinding, roughness prediction

中图分类号: