[1]SUN Lin,YANG Shiyuan.Prediction for surface roughness of profile grinding and optimization of grinding parameters based on least squares support vector machine[J]. Journal of Mechanical Engineering,2009,45(10);254-260(in Chinese)[孙林,杨世元.基于最小二乘支持矢量机的成形磨削表面粗糙度预测及磨削用量优化设计[J].机械工程学报,2009,45(10);254-260.]
[2]LI Xin,HUANG Yun,HUANG Zhi,et al.The analysis and predicting about the magnesium alloy surface quality based on abrasive belt grinding[J].Machinery Design & Manufacture,2009,47(11);186-187(in Chinese)[李鑫,黄云,黄智,等.镁合金砂带磨削表面质量分析及其预测[J].机械设计与制造,2009,47(11);186-187.]
[3]XU Kaizhou,HU Dejin,WEI Chenjun.Vogl fast BP network and orthogonal experiment method in optimization of sphere grinding process parameters[J].Journal of Shanghai Jiaotong University,2009,43(12);1956-1961(in Chinese)[许开州,胡德金,魏臣隽.基于正交试验和Vogl快速BP网络的球面磨削工艺优化方法[J].上海交通大学学报,2009,43(12);1956-1961.]
[4]QIU Jian,GONG Yadong,LIU Changfu,et al.Evaluation of abrasive layer optimization of grinding wheel and its surface topography after super high-speed point grinding[J].Journal of Northeastern University;National Science,2010,31(1);111-114(in Chinese)[仇健,巩亚东,刘昌付,等.超高速点磨削砂轮磨料层优化和表面形貌评价[J].东北大学学报:自然科学版,2010,31(1);111-114.]
[5]ZHOU Yuanjing.Application of BP neural network based on genetic algorithm for monitoring wear condition of cutting tool[D].Chengdu;Southwest Jiaotong University,2010(in Chinese)[周媛婧.基于遗传算法的BP神经网络在刀具磨损状态监测中的应用[D].成都;西南交通大学,2010.]
[6]HAO Wangshen,TURYAGYENDA G.Prediction of cutting force for self-propelled rotary tool using artificial neural networks[J].Journal of Materials Processing Technology,2006,180(1/2/3);23-29.
[7]CHEN Dongju.Study on interpolation algorithm of numeric control based on genetic-neural-network[D].Harbin;Harbin Institute of Technology,2006(in Chinese)[陈东菊.基于遗传-神经网络的数控插补算法的研究[D].哈尔滨;哈尔滨工业大学,2006.]
[8]WANG Qingyi.Study on multi-function micro machine tool and its machining technology[D].Tianjin;Tianjin University,2009(in Chinese)[王庆祎.多功能微型机床及其加工技术的研究[D].天津;天津大学,2009.]
[9]ZAIN A M,HARON H,SHARIF S.Prediction of surface roughness in the end milling machining using Artificial Neural Network[J].Expert Systems with Applications,2010,37(2);1755-1768.
[10]YAN Huasheng.Key techniques study on dynamic design and optimization of machine tool structure[D].Xiamen;Xiamen University,2008(in Chinese)[颜华生.机床结构动态设计与优化关键技术研究与应用[D].厦门;厦门大学,2008.]
[11]KARAYEL D.Prediction and control of surface roughness in CNC lathe using artificial neural network[J].Journal of Materials Processing Technology,2009,209(7);3125-3127.
[12]ZHANG G,PATUWO B E,HU M Y.Forecasting with artificial neural networks;the state of the art[J].International Journal of Forecasting,1998,14(1);35-62.
[13]KOHLI A,DIXIT U S.A neural-network-based methodology for the prediction of surface roughness in a turning process[J].International Journal of Advanced Manufacturing Technology,2005,25(1/2);118-129.
[14]HU J P,LI Y,CH J.Surface roughness prediction of high speed milling based on back propagation artificial neural network[J].Advanced Materials Research,2010,201/202/203;696-699.
[15]AL-AHMARIA M A.Predictive machinability models for a selected hard material in turning operations[J].Journal of Material Processing Technology,2007,190(1/2/3);305-311.
[16]DAVIM J P,GAITONDE V N,KARMIK S R.Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models[J].Journal of Material Processing,2008,205(1/2/3);16-23.
[17]FEI Yu.Applied mathematical statistics-basic conceptions and methods[M].Beijing;Science Press,2007(in Chinese).[费宇.应用数理统计—基本概念与方法[M].北京;科学出版社,2007.] |