• 论文 •    

流程企业智能排产与优化调度技术

罗焕佐,宋国宁,王晓峰,高振林,郭建设,秦绪伟,韩桂华   

  1. 1.中国科学院沈阳自动化研究所,辽宁沈阳110016;2.中国科学院研究生院,北京100086;3.沈阳化工学院,辽宁沈阳110021;4.中国石油锦西炼油化工总厂,辽宁葫芦岛125001
  • 出版日期:2003-11-15 发布日期:2003-11-25

Technology of Intelligent Planning and Optimal Scheduling for Process Enterprises

LUO Huan-zuo, SONG Guo-ning, WANG Xiao-feng,,GAO Zhen-lin, GUO Jian-she, QIN Xu-wei, HAN Gui-hua   

  1. 1.Shenyang Inst. of Automation, Chinese Academy of Sciences, Shenyang110016, China;2.Graduate Sch. of the Chinese Academy of Sciences, Beijing100086, China;3.Shenyang Inst. of Chemical Tech., Shenyang110021, China;4. Jinxi Petrochemical Co. of China National Petroleum Corporation, Huludao125001, China
  • Online:2003-11-15 Published:2003-11-25

摘要: 以石化企业为背景,深入分析了流程企业的生产特点及当前计划排产与优化调度的现状,重点阐述了智能排产与优化调度系统的结构模型,提出并解决了基于综合物流和解耦策略的优化排产技术以及基于主动式数据挖掘的渐进调合等关键技术问题,采用Multi-Agent技术实现了原型系统的开发,为流程企业生产的优化提供了新的方法与技术。

关键词: 流程企业, 计划调度, 分布式人工智能, 数据挖掘

Abstract: After analyzing the features of process enterprises and the state-of-art of planning and scheduling, a new intelligent planning and optimal scheduling system model for process enterprises is elaborated. The optimal planning technology based on integrated material flow and de-coupling strategy, and gradual concoction technologies with initiative data mining are proposed. The system prototype is developed with Multi-Agent technology. Therefore, it can provide new approach and technology for the production optimization in process enterprises.

Key words: process enterprises, planning and scheduling, distributed artificial intelligence, data mining

中图分类号: