• 论文 •    

压缩遗传算法在供应链布局中的应用

李树刚,吴智铭,庞小红   

  1. 上海交通大学自动化研究所,上海200030
  • 出版日期:2004-02-15 发布日期:2004-02-25

Compact Genetic Algorithm and Its Application for Layout of Supply Chain

LI Shu-gang, WU Zhi-ming, PANG Xiao-hong   

  1. Inst. of Automation, Shanghai Jiaotong Univ., Shanghai200030, China
  • Online:2004-02-15 Published:2004-02-25

摘要: 针对供应链广泛存在的工厂/仓库的布局问题,以工厂固定期限内的最大化利润、企业到客户和供应商之间的最小访问时间,以及以当地优惠政策的最大量化值为目标函数,提出一种多时段、多目标的模型。由于该类问题既是Pareto优化问题,又是典型的NP难题,用通常的寻优方法不会得到满意的结果,因此,采用压缩遗传算法来解决。同时,为了加快压缩遗传算法的收敛速度,引入最小二乘方法对概率矩阵的元素值进行估计,提出了快速压缩 遗传算法。最后,根据生产实践中得到的数据进行了仿真,通过压缩遗传算法和整数规划方法的比较,验证了快速压缩遗传算法在解决多目标优化问题上的有效性。

关键词: 多目标, 压缩遗传算法, 供应链, 布局, 最小二乘法

Abstract: The layout problem of plant/warehousing facilities are concerned. So a multiple time/multiple objective model is proposed with the aim to maximize total profit, minimize total access time between customers and suppliers, and maximize aggregated local incentives within the time limit. At the same time, the problem keeps the feature of NP-hard and with the traditional method we cannot get the optimal result easily. Hereby, a compact genetic algorithm (CGA) is introduced to solve the problem. In order to accelerate the convergence speed of the CGA, the least square approach is introduced and then a fast compact genetic algorithm (fCGA) is proposed. Finally, compared with the CGA and classical integer programming (IP), the efficiency of fCGA is shown by the simulation results.

Key words: multiple objective, compact genetic algorithm, supply chain, layout, least square approach

中图分类号: