• 论文 •    

一种多准则库存分类的混合预测方法

李波,赵志彦,段铁英   

  1. 1.天津大学管理学院信息管理与管理科学系,天津300072;2.天津市世界贸易中心协会,天津300050
  • 出版日期:2004-05-15 发布日期:2004-05-25

Hybrid Predictive Method for Multi-criteria Inventory Classification

LI Bo,ZHAO Zhi-yan,DUAN Tie-ying   

  1. 1.Dep. of Info. Management, Tianjin Univ., Tianjin300072, China;2.China World Trade Center of Tianjin, Tianjin300050, China
  • Online:2004-05-15 Published:2004-05-25

摘要: 提出一种基于混合模型,对企业库存信息管理系统中的物质项目进行多准则分类预测的方法。整个分类过程包括两部分:其一,以粗糙集方法作为初始分类工具,实现库存分类中多准则属性的约简,减少计算量,但不损失任何有效信息,同时,基于提出的三个信息测量概率规则,发展了抽取决策规则的穷尽算法和覆盖算法;其二,对于不能由粗糙集模型正确分类的物质项目,进一步采用BP算法的人工神经网络进行分类。该方法不仅克服了神经网络分类模型输入个数受限的缺点,而且可得到较高的预测精度。为验证方法的有效性,仿真实验时比较了具有BP算法的神经网络模型和粗糙集模型的分类预测精度。结果表明,混合模型是企业库存信息管理系统中进行决策预测的一种可行方法。

关键词: 混合模型, 粗糙集, 多准则库存分类, 决策规则

Abstract: A predictive approach of hybrid model for multi-criteria classification of inventory items is presented in this paper. The whole procedure includes two parts as follows. The first is to apply the advantages of rough sets (RS) to handle the qualitative criteria and realize the reduction of multi-criterion attributes without information loss during inventory classification. Then, based on the defined three information probability rules, the exhaustive algorithm and the covering algorithm are developed to extract the classification decision rules. The second is to further classify the items in the inventory classification, which cannot be classified correctly by rough sets by artificial neural network (ANN) with BP algorithm. The proposed method can not only overcome the shortcomings of input limitation in ANN, but further improve the prediction accuracy.Finally, three comparable simulation experiments for the real inventory classification problem have been performed using the ANN model with the BP algorithm and the rough sets method. It is proved that the use of the hybrid model is a promising analytical tool in the real decision-making systems.

Key words: hybrid model, rough sets, multi-criteria inventory classification, decision rules

中图分类号: