计算机集成制造系统 ›› 2019, Vol. 25 ›› Issue (第1): 81-89.DOI: 10.13196/j.cims.2019.01.008

• 当期目次 • 上一篇    下一篇

数控机床热误差预测模型的评估方法

江雪梅,陶媛媛,娄平+,严俊伟,张小梅,胡缉伟   

  1. 武汉理工大学信息工程学院
  • 出版日期:2019-01-31 发布日期:2019-01-31
  • 基金资助:
    国家自然科学基金资助项目(51475347);湖北省技术创新专项基金资助项目(2016AAA016);科技部国际科技合作项目(2015DFA70340)。

Evaluation method for thermal error prediction models of computer numerical control machine tools

  • Online:2019-01-31 Published:2019-01-31
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.51475347),the Technological Innovation Special Fund of Hubei Province,China(No.2016AAA016),and the International Science & Technology Cooperation Program,China(No.2015DFA70340).

摘要: 数控机床热误差产生机理复杂,通常使用温度场监测数据数学建模对热误差进行预测,加工工况和所处环境的复杂使得数据驱动建模方法的优劣难以全面评价,因此建立了一套热误差预测模型的评价指标体系,并提出了相应的评估方法,从热误差预测模型的鲁棒性、准确性、有效性、稳定性与相关性方面对预测模型的性能进行了综合评价。以ZK5540A型重型数控机床在空转工况下所监测的温度场数据为例,采用所提评价指标和评估方法分别对3种不同的数据驱动建模方法的性能指标进行了计算与分析,验证了评估指标和方法的有效性。

关键词: 数控机床, 热误差预测模型, 评价指标, 评估方法

Abstract: Due to the complicated mechanism of Computer Numerical Control (CNC) machine tool's thermal error,they are usually predicted by mathematical modeling based on temperature field monitoring data.The complexity of working conditions and environment makes it difficult to evaluate the advantages and disadvantages of data-driven modeling method comprehensively.Therefore,a set of evaluation index system of thermal error prediction model was established and the corresponding evaluation method was proposed.The performance of the prediction model was evaluated comprehensively from the aspects of robustness,accuracy,effectiveness,stability and correlation.By taking the temperature field data of ZK5540 heavy CNC machine tool with air-cutting conditions as an example,the performance of three different data-driven models were calculated and analyzed by using the evaluation index and evaluation method proposed,which verified the effectiveness of the evaluation index and method.

Key words: computer numerical control machine tools, thermal error prediction models, evaluation indexes, evaluation method

中图分类号: