• 论文 •    

应用思维进化计算求解作业车间调度问题

陈培军,曾建潮   

  1. 太原重型机械学院系统仿真与计算机应用研究所,山西太原030024
  • 出版日期:2004-10-15 发布日期:2004-10-25

Solving job-shop scheduling with mind evolutionary computation

CHEN Pei-jun, ZENG Jian-chao   

  1. Division of System Simulation and Computer Application of TaiyuanHeavy Machinery Institute, Taiyuan030024,China
  • Online:2004-10-15 Published:2004-10-25

摘要: 为了克服遗传算法早熟和最优解较差的缺点,提出了求解作业车间调度问题的新方法。首先设计了简单、易操作的编码和解码方法,然后应用思维进化计算的趋同和异化操作求解该问题。增强了进化的方向性,在趋同过程中,充分利用优秀个体的信息,利用信息矩阵记录优秀个体的特征,并以信息矩阵为指导产生新个体。利用异化操作进行全局搜索,使算法具有全局收敛性。最后通过仿真实例验证了该算法的有效性。

关键词: 作业车间调度问题, 编码和解码, 信息矩阵, 趋同和异化, 思维进化计算

Abstract: To overcome prematurity & of genetic algorithm, a new algorithm to solve job-shop scheduling was presented. A simple and easy operation method of coding and decoding was designed first. Then job-shop scheduling could be solved by conducting convergence and dissimilation of Mind Evolutionary Computation. In the course of convergence, make full use of information of excellent individuals the characteristics of these superior individuals memorized in information matrix, new individuals would be generated under the guidance of information matrix. Conducting overall research by dissimilation operation. Simulation experiment results have shown the effectiveness of this algorithm.

Key words: job-shop scheduling, coding and decoding, information matrix, convergence and dissimilation, mind evolutionary computation

中图分类号: