摘要: 针对资源投入调度问题,提出了基于实时调度状态的调度优先级规则智能决策机制,构造了嵌合人工神经网络的双层迭代循环搜索算法。算法上层为启发式资源搜索框架,下层为基于实时调度状态的调度优先级规则智能决策算法。下层算法通过双隐层BP神经网络离线学习,获得调度状态与调度优先级规则的映射关系,并在实时调度过程中的每一阶段,根据当前调度数据,智能决策调度优先级规则,并指导作业调度进行。最后,通过标准算例库PSPLIB进行对比实验,验证了所设计算法的有效性。
中图分类号:
陆志强,任逸飞,许则鑫. 基于深度学习的资源投入问题算法[J]. 计算机集成制造系统, 2021, 27(6): 1558-1568.