摘要: 随着偏光片的应用日益广泛,对于其生产质量的要求也愈加严苛。采用深度学习的目标检测算法对偏光片的三类瑕疵缺陷进行检测,以解决传统方法检测精度低、硬件成本高的问题,从而优化生产工艺。基于YOLOv3-Tiny算法,采用Dense Block模块与SPP-Net模块对其特征提取网络进行优化,并与待检测目标的实际情况相结合调整优化网络的检测模块,提出一种改进后的算法YOLOv3-Tiny-D。实验表明,所提方法在偏光片数据集上测试时,单张图片在保证检测速度的同时(18ms/张),脏污、划痕、标记3类缺陷的检测正确率为9074%、9890%、9752%,平均正确率9572%,较原算法提高7%。
中图分类号: