计算机集成制造系统 ›› 2022, Vol. 28 ›› Issue (9): 2805-2814.DOI: 10.13196/j.cims.2022.09.013
孙世旭1,2,胡小锋1+,夏铭远1
SUN Shixu1,2,HU Xiaofeng1+,XIA Mingyuan1
摘要: 针对零件加工过程刀具破损监测存在的破损样本数量极少、样本分布随工况变化的问题,提出一种半监督的增量学习方法。首先,采集部分刀具正常状态的样本,通过自编码器学习正常样本的低维共性特征,并根据样本在特征空间的分布建立刀具破损监测模型,在无破损样本的条件下开始破损监测。在破损监测过程中,采用自编码器的重建误差检测样本分布是否变化,在样本分布变化或模型识别错误时,采用最新获取的样本对模型进行增量训练,使模型保持良好的识别能力。利用发电机转子铣削过程刀片破损数据进行验证,与标准的自编码器方法、一分类支持向量机方法和局部离群因子方法进行对比分析,结果表明,所提方法显著提高了对不同工况获取的样本的识别效果。
中图分类号: