计算机集成制造系统 ›› 2023, Vol. 29 ›› Issue (8): 2574-2584.DOI: 10.13196/j.cims.2023.08.006
许焕卫,杨学睿,何晗瑾,魏文张
XU Huanwei,YANG Xuerui,HE Hanjin,WEI Wenzhang
摘要: 针对目前普遍存在的目标数目较多,Pareto前沿离散程度较高的昂贵多目标优化问题,现有大部分算法无法利用较少函数评估得到优质Pareto前沿,因此提出一种基于多偏好物理规划的代理辅助多目标优化算法(M3pEGO)。该方法首先设置偏好矩阵,通过不同物理规划总偏好值将多目标优化问题转化为单目标优化问题,接着与Kriging代理模型相结合,利用高效的全局优化(EGO)算法实现自适应优化。最后通过9个经典测试函数,将此方法与ParEGO算法和多目标EGO算法进行对比。结果表明,所提算法在解决昂贵多目标优化,尤其是Pareto前沿离散程度较高的问题上优势明显,在有限次迭代后能够精确拟合到真实Pareto前沿,且能够得到收敛、均匀的非支配解集。
中图分类号: