计算机集成制造系统 ›› 2024, Vol. 30 ›› Issue (3): 1092-1104.DOI: 10.13196/j.cims.2023.0039
廖鑫婷1,2,张洁1+,吕盛坪3
LIAO Xinting1,2,ZHANG Jie1+,LYU Shengping3
摘要: 缺陷检测是印制电路板(PCB)生产过程中质量控制的重要环节。由于PCB表面缺陷尺寸微小,导线布局复杂多样,现有的检测算法难以充分利用微小缺陷的特征信息,其检测准确率难以满足生产需求。为解决上述问题,提出针对PCB微小缺陷检测的YOLOv5-TDD算法。该算法在YOLOv5基础上,首先在颈部网络中增加浅层特征融合分支,提升微小缺陷特征信息流通效率;其次引入SE-SiLU注意力机制模块,以对特征信息分配权重的方式,提高网络对浅层特征的微小缺陷信息关注度。实验结果表明,YOLOv5-TDD在PCB_DATASET缺陷数据集测试中,其检测精度mAP为99.12%,相较于YOLOv5提高了3.54%,检测精度优于其他算法。
中图分类号: