计算机集成制造系统 ›› 2024, Vol. 30 ›› Issue (7): 2486-2494.DOI: 10.13196/j.cims.2022.0009

• • 上一篇    下一篇

基于用户偏好评分值修正的深度神经网络推荐模型

田磊,易辉+,陈晨子,缪小冬   

  1. 南京工业大学电气工程与控制科学学院
  • 出版日期:2024-07-31 发布日期:2024-08-08
  • 作者简介:
    田磊(1998-),男,河南郑州人,硕士研究生,研究方向:推荐系统、深度学习、数据处理等,E-mail:1427231274@qq.com;

    +易辉(1984-),男,江苏溧阳人,副教授,博士,研究方向:人工智能、智能控制、智慧工厂、数据驱动故障诊断等,通讯作者,E-mail:jsyihui@126.com;

    陈晨子(1984-),女,河北献县人,副教授,博士,研究方向:管理科学与工程,E-mail:ccz@njtech.edu.cn;

    缪小冬(1985-),男,江苏如东人,副教授,博士,研究方向:智能制造、数字孪生、深度学习等,E-mail:mxiaodong@njtech.edu.cn。
  • 通讯作者简介:易辉(1984-),男,江苏溧阳人,副教授,博士,研究方向:人工智能、智能控制、智慧工厂、数据驱动故障诊断等,通讯作者,E-mail:jsyihui@126.com
  • 基金资助:
    国家重点研发计划资助项目(2020YFB1713804)。

Recommendation model of deep neural network based on user rating preference correction

TIAN Lei,YI Hui+,CHEN Chenzi,MIAO Xiaodong   

  1. College of Electrical and Control Science,Nanjing Tech University
  • Online:2024-07-31 Published:2024-08-08
  • Supported by:
    Project supported by the National Key R&D Program,China(No.2020YFB1713804).

摘要: 针对工业产业链上下游产品选购中用户对产品评分习惯差异较大的问题,结合用户评分习惯提出修正算法,构建一种基于用户偏好评分值修正的深度神经网络推荐模型(UPDNN)。该方法首先通过历史数据对各用户评分偏好进行学习,设计特有的满意度投影函数将用户评分投影至满意度空间进行修正,然后在满意度空间中通过深度神经网络进行推荐模型训练和待测产品满意度预测,最终给出用户的Top-k推荐产品表,实现产品推荐。实验结果表明,UPDNN较经典推荐算法在Movielens数据集上的推荐结果更贴合用户喜好,验证了所提方法的有效性。

关键词: 评分值修正, 深度神经网络, 信息提取, 特征处理

Abstract: Aiming at the problem that users' product scoring habits vary greatly in the upstream and downstream product selection of the industrial chain,a User Preference score-correction based Deep Neural Network(UPDNN) was proposed based on user rating habits.Through the historical data,the proposed method first learned the rating preferences of each user,and a unique satisfaction projection function was designed to map user ratings into the satisfaction space for correction.Then,the recommendation model was trained and the satisfaction prediction of the product to be tested was performed by deep neural network in the satisfaction space,and eventually the user's Top-k recommended product table was given to achieve product recommendation.The experimental results showed that the recommendation results of UPDNN were more suitable for users' preferences than the classical recommendation algorithms on the Movielens dataset,which verified the effectiveness of the proposed method.

Key words: rating value correction, deep neural network, information extraction, feature processing

中图分类号: