计算机集成制造系统 ›› 2024, Vol. 30 ›› Issue (7): 2526-2539.DOI: 10.13196/j.cims.2021.0891

• • 上一篇    下一篇

基于实时补货情况下的制造型企业RMFS订单拣选系统储位分配问题

鲁建厦1,钱慧元1,赵文彬1+,李英德1,赵国利2   

  1. 1.浙江工业大学机械工程学院
    2.博世电动工具(中国)有限公司
  • 出版日期:2024-07-31 发布日期:2024-08-08
  • 作者简介:
    鲁建厦(1963-),男,浙江余姚人,教授,研究方向:智能物流、精益生产等,E-mail:ljs@zjut.edu.cn;

    钱慧元(1996-),男,浙江杭州人,硕士研究生,研究方向:智能物流,E-mail:854301680@qq.com;

    +赵文彬(1986-),男,吉林延吉人,讲师,研究方向:智能物流、精益生产,通讯作者,E-mail:wenbin86@zjut.edu.cn;

    李英德(1978-),男,山东寿光人,讲师,研究方向:智能物流,E-mail:liyingde2008@sina.com;

    赵国利(1976-),女,浙江诸暨人,高级工程师,研究方向:精益生产,智能物流,E-mail:8269341@qq.com。
  • 通讯作者简介:赵文彬(1986-),男,吉林延吉人,讲师,研究方向:智能物流、精益生产,通讯作者,E-mail:wenbin86@zjut.edu.cn
  • 基金资助:
    浙江省重点研发计划资助项目(2018C01003);浙江省自然科学基金面上资助项目(LY18G020018)。

Storage allocation of RMFs order picking system in manufacturing enterprises based on real-time replenishment

LU Jiansha1,QIAN Huiyuan1,ZHAO Wenbin1+,LI Yingde1,ZHAO Guoli2   

  1. 1.College of Mechanical Engineering,Zhejiang University of Technology
    2.Bosch Power Tools (China),Co,.Ltd.
  • Online:2024-07-31 Published:2024-08-08
  • Supported by:
    Project supported by the Key R&D Program of Zhejiang Province,China(No.2018C01003),and the Natural Science Foundation of Zhejiang Province,China(No.LY18G020018).

摘要: 为提高制造型企业基于移动机器人的拣货系统(RMFS)的拣选效率,分析订单拣选过程中补货对拣选效率的影响,对其实时补货情况下的储位分配问题进行研究,以补货和拣货两阶段总搬运距离最短为目标,建立整数非线性规划模型,提出基于二分网络的储位分配算法和改进灰狼优化算法,利用前两个算法有效解决了基于实时补货情况下的RMFS订单拣选系统储位分配问题。实验表明,设计的储位分配算法和改进灰狼算法与遗传算法、传统灰狼算法、改进人工蜂群算法、引入Lévy飞行的改进灰狼算法相比,在求解精度和求解稳定性上有较明显的优势,在不同仓库规模和订单拣选规模下有效提高了RMFS的作业效率。

关键词: 实时补货, 基于移动机器人的拣货系统, 储位分配, 灰狼优化算法

Abstract: To improve the picking efficiency of Robotic Mobile Fulfillment System (RMFS) order picking system in manufacturing enterprises,the impact of replenishment on the picking efficiency in the order picking process was analyzed,and the storage allocation problem under real-time replenishment was studied.Aiming at the shortest total handling distance in the two stages of replenishment and picking,an integer nonlinear programming model was established.A storage allocation algorithm based on binary network and an improved gray wolf optimization algorithm was proposed.The first two algorithms were used to effectively solve the storage allocation problem of RMFs order picking system based on real-time replenishment.Experiments showed that the designed storage allocation algorithm and improved gray wolf algorithm had obvious advantages in solution accuracy and stability compared with genetic algorithm,traditional gray wolf algorithm,improved artificial bee colony algorithm and improved gray wolf algorithm with Lévy flight,and effectively improved the operation efficiency of RMFS order picking system under different warehouse sizes and order picking sizes.

Key words: real time replenishment, robotic moble fulfillment system, storage allocation, gray wolf optimization algorithm

中图分类号: