[1]OKADA S, SOPER T. A shortest path problem on a network with fuzzy arc lengths[J].
Fuzzy Sets and Systems,2000, 109(1):129-140.
[2]MARTINS V Q E. On a multicriteria shortest path problem[J]. European Journal
of Operational Research, 1984, 16(2):236-245.
[3]HENG I M. Efficient interactive methods for a class of multiattribute shortest
path problem [J]. Management Science, 1994, 40(7):891-897.
[4]BRUMBANGH S J. An empirical investigation of some bicriterion shortest path
algorithms [J]. European Journal of Operational Research, 1989, 43(2):216-224.
[5]DUBOIS D, PRADE H. Fuzzy sets and systems [M]. New York: Academic Press,
1980.
[6]KLEIN M C. Fuzzy shortest paths [J]. Fuzzy Sets and Systems, 1991, 39(1):27-41.
[7]OKADA S, GEN M. Fuzzy shortest path problem [J]. Computer & Industrial Engineering,
1994, 27(1-4):465-468.
[8]KAO C L, MAW S C. The fuzzy shortest path problem and its most vital arcs
[J]. Fuzzy Sets and Systems, 1993, 58(3):343-353.
[9]张锋,陈禹六.基于活动的成本计算法(ABC)在BPR中的应用 [J].清华大学学报(自然科学版), 2000, 40(9): 104-108.
[10]陈禹六.实施CIM的评价准则 [J].计算机集成制造系统—CIMS, 1997, 3(3):15-19.
[11]DUBOIS D, PRADE H. Ranking fuzzy numbers in the setting of possibility
theory [J]. Information Science, 1983, 30(3):183-224.
[12]BORTOLAN G, DEGANI R. A review of some methods for ranking fuzzy subsets
[J]. Fuzzy Sets and Systems, 1985, 15(1):1-9.
[13]DELGADO M, VERDEGAY J L, VILA M A. A procedure for ranking fuzzy numbers
using fuzzy relations [J]. Fuzzy Sets and Systems, 1988, 26(1):49-62.
|