[1] LAARHOVEN P J M, AARTS E H L, LENSTRA J K. Job shop scheduling by simulated annealing [J]. Operations Research, 1992,40(1):113-125. [2] GEMAN S, GEMAN D. Stochastic relaxation, gibbs distribution, and the bayyesian restoration of images[J]. IEEE Transaction Pattern Abalysis and Machine Intelligence, 1984,PAMI-6(9):721-741.
[3] WANG Bo, ZHANG Qun, WANG Fei, et al. Quantitative analysis of infeasible solution to job shop scheduling problem [J]. Control and Decision, 2001,16(1):33-36(in Chinese).[王 波, 张 群 ,王 飞,等. Job Shop排序问题解空间定量分析[J]. 控制与决策, 2001,16(1):33-36.]
[4] STEINH FEL K, ALBRECHT A, WONG C K. Two simulated annealing-based heuristics for the job shop scheduling problem[J]. European Journal of Operational Research, 1999,118(3):524-548.
[5] KOLONKO M. Some new results on simulated annealing applied to the job shop scheduling problem [J]. European Journal of Operational Research, 1999,113(1):123-136.
[6] FAN Ye, ZHOU Hong. On effective factors of simulated annealing algorithm on job-shop scheduling and an algorithm with repetitious quenching [J]. Systems Engineering-Theory Methodology Applications, 2003,11(1):72-76(in Chinese).[范 晔, 周 泓. 作业排序模拟退火算法影响因素分析和一种多次淬火模拟退火法[J]. 系统工程理论方法应用, 2003,11(1):72-76.]
[7] FANG Zhaoben, MIU Baiqi. Stochastic processes[M]. Hefei: University of Science and Technology of China Press, 1993(in Chinese).[方兆本, 缪柏其. 随机过程[M]. 合肥: 中国科学技术大学出版社, 1993.]
[8] ZHANG Wenxiu, LEUNG Yee. Mathematical foundation of genetic algorithms[M]. Xi’an: Xi’an Jiaotong University Press, 2000(in Chinese).[张文修, 梁 怡. 遗传算法的数学基础[M]. 西安: 西安交通大学出版社, 2000.]
|