• 论文 •    

一种基于免疫原理的新优化遗传算法

常  征, 黄  明, 朱光明   

  1. 1.山东理工大学 物理学院,山东  淄博  255013;2.大连交通大学 电气信息分院,辽宁  大连  116028;3.宝钢研究院 前沿技术所,上海  201900
  • 出版日期:2005-07-15 发布日期:2005-07-25

Improved genetic algorithm based on immunity

CHANG Zheng, HUANG Ming, ZHU Guang-ming   

  1. 1.Dep. of Physics, Shandong Univ. of Tech., Zibo  255013, China;2.Dep. of Electric Eng., Dalian Jiaotong Univ., Dalian  116028, China; 3.Baosteel Advanced Tech. Inst., Shanghai  201900, China
  • Online:2005-07-15 Published:2005-07-25

摘要: 将静态繁殖理论和机器学习原理引入到免疫遗传算法中,利用自适应疫苗,增强个体免疫力,以增加种群的平均适值,从而有效地避免了最优解的丢失,缩小了搜索空间,加快了进化速度,使系统能够在很短的时间内得到最优解。同时,针对典型车间调度问题,分别对改进算法和其他优化算法的计算结果进行了比较,表明改进算法更有效。

关键词: 静态繁殖, 机器学习, 免疫遗传算法, 自适应疫苗<

Abstract: Theories of static multiplication and machine learning were introduced to immune genetic algorithm. The chromosomes’ immunity was boosted and the average fitness of chromosomes was improved by using adaptive vaccine, as a result the loss of optimum solution was avoided, searching space was reduced and evolution speed was increased, then the optimal solution could be achieved earlier. At the same time, the calculation result of the mentioned algorithm was compared with other optimal algorithms in solving classic Job-shop Scheduling Problem.

Key words: static multiplication, machine learning, immune genetic algorithm, adaptive vaccine

中图分类号: