Computer Integrated Manufacturing System ›› 2024, Vol. 30 ›› Issue (9): 3244-3256.DOI: 10.13196/j.cims.2022.0011

Previous Articles     Next Articles

MRO service resource scheduling for complex products with multi-skill human resources under uncertain environment

GUO Jun1,2,XU Siwang1,2,DU Baigang1,2+,ZHOU Shengwen1,2   

  1. 1.School of Mechanical and Electrical Engineering,Wuhan University of Technology
    2.Hubei Provincial Digital Manufacturing Key Laboratory
  • Online:2024-09-30 Published:2024-10-09
  • Supported by:
    Project supported by the National Natural Science Foundation,China(No.51705386),and the China Scholarship Council,China(No.201606955091).

不确定环境下考虑多技能人力资源的复杂产品MRO服务资源调度

郭钧1,2,徐思旺1,2,杜百岗1,2+,周圣文1,2   

  1. 1.武汉理工大学机电工程学院
    2.数字制造湖北省重点实验室
  • 作者简介:
    郭钧(1982-),男,湖北武汉人,副教授,博士,研究方向:供应链管理与优化,E-mail:junguo@whut.edu.cn;

    徐思旺(1997-),男,安徽六安人,硕士研究生,研究方向:供应链管理与优化,E-mail:773208018@qq.com;

    +杜百岗(1987-),男,湖南桃源人,副教授,博士,研究方向:制造过程管理与优化,通讯作者,E-mail:dbg767@163.com;

    周圣文(1985-),男,湖北天门人,博士研究生,研究方向:数字孪生驱动的设计/制造/服务,E-mail:swzhou1007@163.com。
  • 基金资助:
    国家自然科学基金资助项目(51705386);中国国家留学基金资助项目(201606955091)。

Abstract: There are different human resources with different skills in the service scheduling of Complex Product Maintenance,Repair and Overhaul (MRO).To solve the problem that the actual execution period of the task will change with the different assigned schemes,the matching relation of "task-skill-personnel" was established by combining multi-skill labor scheduling with personnel learning effect.A stochastic chance constrained programming mathematical model was established under uncertain resource scheduling time parameters with objectives of minimizing service time,minimizing personnel redundancy and maximizing the cost performance index of the resources.A hybrid intelligent algorithm based on stochastic simulation,BP neural network and NSGA-II was proposed to solve the problem.The effectiveness and applicability of the proposed method were verified by comparative experimental cases with different parameter characteristics and sensitivity analysis.

Key words: maintenance,repair and overhaul service resource scheduling, multi-skilled human resources, temporal uncertainty, stochastic chance-constraint, hybrid intelligent algorithm

摘要: 针对复杂产品维护、维修、大修(MRO)服务资源调度中存在人力资源多技能异质而导致任务实际执行工期随着指派方案的不同而变化的问题,将多技能工调度与人员学习效应相结合,建立“任务技能人员”的匹配关系。以最小化服务完成时间、最小化人员冗余和最大化资源性能成本比为目标,构建资源调度时间参数不确定条件下的随机机会约束规划数学模型。并提出一种基于随机模拟、BP神经网络和改进NSGA-II的混合智能算法进行求解。通过具有不同参数特征的对比实验案例和敏感性分析,验证了所提模型和算法的有效性和适用性。

关键词: MRO服务资源调度, 多技能人力资源, 时间不确定性, 随机机会约束, 混合智能算法

CLC Number: